博碩士論文 88326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.134.81.206
姓名 石宜鑫(Yi-Xing Ch )  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 超細粒徑微粒濃縮器操作介面之改善與自動化之研究
(The Improvement and Automation of the Ultrafine Particle Concentrator)
相關論文
★ 高科技廠火災發生與消防安全風險管理之探究-以日月光半導體中壢廠為例★ 無線射頻辨識應用於學校實驗室廢液管理之研究
★ 高鐵700T型列車車廂內噪音之研究★ 個人暴露與呼出氣體連續量測系統之研發
★ 以作業別為導向之勞工暴露評估技術研發~以縲縈絲工廠員工二硫化碳暴露為例~★ 可攜帶直讀式氣體偵測器之研發
★ 勞工工作活動、時間與有害氣體暴露自動連續監測設備研發★ 嵌入式儀器資料收集系統之設計與實踐 -以環保署空氣品質監測站為例
★ 勞工有害物暴露活動與暴露時間自動連續監測方法之開發與現場實證★ 新型勞工個人總暴露劑量警報器之實場驗證
★ 先進勞工工作活動模式即時監測系統之研發—應用雙向紅外線定位技術★ 勞工作業環境多點影像監視系統之開發與實作
★ 新型勞工個人總暴露劑量警報器之研發★ 無人機房資料蒐集與傳輸系統研究與開發 -以環保署空品站為例
★ 新型勞工工作活動模式即時監測系統之研發-應用雙向無線通訊技術★ 影像暴露監測資訊整合系統之研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 超細粒徑微粒濃縮器(UFPC)是目前唯一可同時濃縮細粒徑與超細粒徑微粒之濃縮器,但原始系統之操作仍有許多不方便之處,例如人力耗費、溫度控制不易、濃縮效果不穩定、系統容易損害等。為了改進這些使用上的缺失,本研究已完成此微粒濃縮器操作介面之改善與自動化,包括:飽和蒸汽單元、乾燥系統及冷卻單元操作介面之改善;完成自動控制軟硬體之設計;系統濃縮效率之測試。目前系統可由電腦即時監測並紀錄系統溫濕度、流量、濃度等參數,並由電腦控制飽和蒸汽箱水溫與冷卻循環水之流量。而性能測試之結果發現溫度之控制相當穩定,但濃縮倍率之範圍約為5至16倍,與理論值22倍有所出入,其原因推測可能與空氣中的含水量有某種程度之相關。
本研究所改善完成之UFPC系統已具備長時間無人操作之能力,除了使用者在操作時更加方便之外,也有助於未來從事最佳操作參數探尋與可調整型濃縮倍率等之研究。
摘要(英) The Ultrafine Particle Concentrator (UFPC) developed by Dr. Sioutas at University of South California is the only device in current market that can concentrate both fine and ultrafine particles at the same time. Despite of its abilities to enrich particle concentrations, the original design of the UFPC, however, has many problems: The system requires many attentions because it was built around parts and modules that need to operate manually; The use of salt and ice to keep frozen temperature in the cooler once caused a corrosive tube that finally destroyed a pump and several valves; The UFPC can’t be continuously operated, because ice in the cooling tank must be changed after 3 or 4 hours operation.
The purpose of this study was to maximize the duration of each operation and to minimize the use of manpower while using the UFPC in studies that requires high concentration ambient particles. To achieve that, several new modules were built. A new saturator and a new cooler both based on close-loop-circulation design were constructed to extent the operation; A longer diffusion dryer was used to eliminate the excess water in the minor flow air; Temperature, relative humidity, and flow sensors were added to monitor conditions of the system; A Windows based software was designed to collect information from sensors and to control temperatures at desired levels in the saturator and the cooler. Several tests were conducted to verify the performances of the new of the UFPC. The results showed that the new system was able to continuously operate for hours. The only thing that stops the UFPC for a brief moment is to replace the drying column. The enrichment factors (EFs) tested with artificial and ambient particles were varied from 5 to 16 that theoretically should be 22. The collected data indicated that the EFs were highly correlated with relative humidity in the incoming air (r=0.8 to 0.9). The amounts of water in the air may have strong influences in the growth of particles that later decides whether the particle can be concentrated or not. Before other hard evidences can be found, this explanation, however, remains a guess.
關鍵字(中) ★ 微粒濃縮器
★  自動控制
關鍵字(英) ★ Ultrafine Particle Concentrator
論文目次 第一章 前言…………………………………………………………1
1.1研究緣起…………………………………………………………1
1.2研究目的與內容…………………………………………………3
第二章 文獻回顧……………………………………………………4
2.1懸浮微粒之粒徑分佈與組成成分………………………………4
2.2懸浮微粒之健康風險評估………………………………………4
2.2.1微粒毒性流行病學之研究……………………………………5
2.2.2微粒毒性實驗…………………………………………………6
2.3微粒暴露之實驗方法……………………………………………7
2.3.1離心式微粒濃縮器……………………………………………8
2.3.2超細粒徑微粒濃縮器…………………………………………10
2.4自動控制…………………………………………………………13
2.4.1溫度感測器……………………………………………………14
2.4.2濕度感測器……………………………………………………17
2.4.3流量感測器…..………………………………………………20
第三章 系統設計與建造……………………………………………21
3.1 原始UFPC系統之介紹與初步功能測試……………………… 21
3.1.1 原始UFPC系統介紹………………………………………… 21
3.1.2 原始UFPC系統安裝測試…………………………………… 26
3.2 UFPC系統改善方案與內容…………………………………… 26
3.2.1冷卻系統改善…………………………………………………28
3.2.2飽和蒸氣系統改善……………………………………………30
3.2.3乾燥管改善……………………………………………………31
3.3自動控制系統之軟硬體設計……………………………………32
3.3.1感測器之選擇與設計…………………………………………32
3.3.1.1溫度感測器…………………………………………………33
3.3.1.2濕度感測器…………………………………………………35
3.3.1.3流量感測器…………………………………………………35
3.3.1.4凝結回流水水位……………………………………………36
3.3.1.5濃縮前後微粒之濃度測量…………………………………38
3.3.2自動控制設計…………………………………………………39
3.3.2.1飽和蒸汽箱溫度控制………………………………………39
3.3.2.2冷凝管冷卻效率控制………………………………………40
3.3.3控制介面卡之選擇……………………………………………40
3.3.4訊號線路整合…………………………………………………43
3.3.5控制軟體設計…………………………………………………45
3.3.6感測器訊號校正………………………………………………48
3.4系統整體性能測試………………………………………………50
3.4.1改善後之微粒濃縮系統單元性能測試………………………50
3.4.2微粒濃縮器性能測試…………………………………………51
第四章 系統測試結果與討論………………………………………54
4.1系統單元改善結果………………………………………………54
4.1.1冷卻器單元改善結果…………………………………………54
4.1.2飽和蒸汽單元改善結果………………………………………54
4.2 微粒濃縮器性能測試結果…………………………………… 55
4.2.1微粒產生系統性能測試結果…………………………………55
4.2.2微粒濃縮器性能測試結果……………………………………57
第五章 結論與建議…………………………………………………77
參考文獻 Anderson K. R., Avol E. L., Edwards S. A., Shamoo D. A., Peng R. C., Linn W. S., Hackney J. D., “Controlled Exposures of Volunteers to Respirable Carbon and Sulfuric-Acid Aerosols”, Journal of the Air & Waste Management Association, Vol.42, Iss.6, pp.770-776, 1992.
Andrew J. G., Chong K., Robert B. D., “Concentrated Ambient Air Particles Induce Mild Pulmonary Inflammation in Healthy Human Volunteers”, Am. J. Respir. Crit. Care. Med., Vol.162, pp.981-988, 2000.
Bascom R., Bromberg P. A., Costa D. A., Devlin R., Dockery D. W., Frampton M. W., Lambert W., Samet J. M., Speizer F. E., Utell M., “Health Effects of Outdoor Air Pollution. Part 1”, Am. J. Respir. Crit. Care. Med., Vol.153, pp.3—50, 1996.
Becker S., Soukup J. M., Gilmour M. I., Devlin R. B., “Simulation of Human and Rat Alveolar Macrophages by Urban Air Particles: Effects of Oxidant Radical Generation and Cytokine Production.”, Toxicol Appl. Pharmacol, Vol.141, pp.637-648, 1996.
Buerki P. R. ”Size-Resoled Trace Metal Characterization of Aerosols Emitted by Four Important Source Type in Switzer-Land”, Atmos. Environ., Vol.23, pp.1659-1668, 1989.
Carvalho L. R. F., Souza S. R., Martinis B. S., Korn M., “Monitoring of The Ultrasonic Irradiation Effect on The Extraction of Airborne Particulate Matter by Ion Chromatography”, Analytica Chimica Acta., Vol.317, Iss.1-3, pp.171-179, 1995.
Charles I. E., Mirza U. B., Dhari A. A., “Responses of Alveolar Macrophages to Post-Gulf-War Airborne Dust From Kuwait”, Environment International, Vol.24, Iss.1-2, pp.213-220, 1997.
Ciocco A., Thompson D. J., “A Follow-Up on Donora Ten Years After: Methodology and Findings”, Am. J. Pub. Health, Vol.15, pp.155—164, 1961.
Costa D. L., Lehmann J. R., Frazier L. T., Doefler D., Ghio A., “Pulmonary Hypertension: A Possible Risk Factor in Particulate Toxicity”, Am. J. Respir. Crit. Care. Med., Vol.149, pp.A480, 1994.
Dockery D. W., Pope C. A. III, Xu X., Spengler J. D., Ware J. H., Fay M. E., Ferris B. G., Speizer F. E., “An Association Between Air Pollution and Mortality in Six US Cities”, N. Engl. J. Med., Vol.329, pp.1753—1759, 1993.
Dong W., Lewtas J., Luster M. I., “Role of Endotoxin in Tumor Necrosis Factor a Expression From Alveolar Macrophages Treated with Urban Air Particles”, Exp. Lung Res., Vol.22, pp.577-592, 1996.
Firket J., “The Cause of The Symptoms Found in the Meuse Valley During the Fog of December 1930”, Bull Acad. R. Med. Belg., Vol.11, pp.683—741, 1931.
Godleski J. J., “Mechanisms of Mortality Associated with Particulate Air Pollution”, Transcript of Clean Air Scientific Advisory Committee Public Meeting, Chapel Hill, North Carolina, 1995.
Godleski J. J., Sioutas C., Katler M., Koutrakis P., “Death from Inhalation of Concentrated Air Particles in Animal Models of Pulmonary Disease”, Am. J. Respir. Crit. Care. Med., Vol.153, pp.A15, 1996.
Gore A. T., Shaddick C. W., “Atmospheric Pollution and Mortality in the County of London”, Br. J. Prev. Soc. Med., Vol.12, pp.104—113, 1968.
Gordon T., Gerber H., Fang C. P., Chen L. C., ”A Centrifugal Particle Concentrator for Use in Inhalation Toxicology”, Inhalation Toxicol, Vol.11, pp.101-117, 1999.
Gordon T., Nadziejko C., Chen L. C., Schlesinger R., “Effects of Concentrated Ambient Particles in Rats and Hamsters: An Exploratory Study”, Healthy Effects Institute, Research Report Number 93., 2000.
Kang Y. C., Park S. B., “Preparation of Fine Silver Particles by Decomposing Droplets Produced from Filter Expansion Aerosol Generator”, Journal of Aerosol Science, Vol.26, pp.S605-S606, 1995.
Kang Y. C., Choi J. U., Park S. B., ”Preparation of High Surface Area MgAl2O4 Particles from Colloidal Solution using Filter Expansion Aerosol Generator”, Journal of the European Ceramic Society, Vol.18, Iss.6, pp.641-646, 1998.
Kang Y. C., Park S. B., “Preparation of Zinc Oxide-Dispersed Silver Particles by Spray Pyrolysis of Colloidal Solution”, Materials Letters, Vol.40, Iss.3, pp.129-133, 1999.
Kobzik L., “Lung Macrophages Uptake of Unopsonized Environmental Particles”, J Immunol, Vol.155, pp.367-376, 1995.
Logan W. P. D., “Mortality in London Fog Incident”, Lancet I, pp.336—338, 1953.
Parker C. R., ”Aerosol Science and Technology”, McGraw-Hill Inc., 1993.
Peters A., Doring A., Wichmann H. E., Koening W., “Increased Plasma Viscosity during an Air Pollution Episode: a Link to Mortality”, Lancet, Vol.349, pp.1582-1587, 1997.
Pope C. A. III, Thun M. J., Namboodiri M. M., Dockery D. W., Evans J. S., Speizer F. E., Heath C. W., “Particulate Air Pol-Lution as a Predictor of Mortality in a Prospective Study of US Adults”, Am. J. Respir. Crit. Care. Med., Vol.151, pp.669—674, 1995.
Schwartz J., Dockery D. W., “Increased Mortality in Philadelphia Associated with Daily Air Pollution Concentrations”, Am. J. Epidemiol., Vol.135, pp.12-19, 1992.
Seaton A., Mac L. W., Donaldson K., Godden D., “Particulate Air Pollution and Acute Health Effects”, Lancet, Vol.345, pp.176-178, 1995.
Sioutas C., Koutrakis P., Burton, R. M., “Development of a Low Cutpoint Slit Visual Impactor for Sampling Ambient Fine Particles”, J. Aerosol Sci., Vol.25, Iss.7, pp.1321-1330, 1994.
Sioutas C., Kim S., Chang M. C., “Development and Evaluation of a Prototype Ultrafine Particle Concentrator”, J. Aerosol Sci., Vol.30, Iss.8, pp.1001-1017, 1999.
Yoshizumi K., Hoshi A., “Size Distribution of Ammonium Nitrate and Sodium Nitrate in Atmospheric Aerosol”, Environ. Sci. Technol., Vol.19, pp.258-261, 1985.
陳衍政, “大氣懸浮微粒之細胞毒性研究-微粒粒徑與成分對A549細胞株釋放細胞激素之影響”, 國立台灣大學職業醫學與工業衛生研究所碩士論文, 1999.
吳朗 編, ”感測與轉換:原理、元件與應用”, 台北, 全欣, 1992.
賴耿陽 編, “感測器應用技術:自動化系統工程之尖端科技”, 台南, 復漢, 1992.
指導教授 王鵬堯(Peng-Yau Wang) 審核日期 2001-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明